Pennsylvania Judicial Center: Prevention of Progressive Collapse Resulting from an Interior Blast Loading

Brian M. Barna Structural Option AE Senior Thesis – Spring 2007

Introduction of Topics

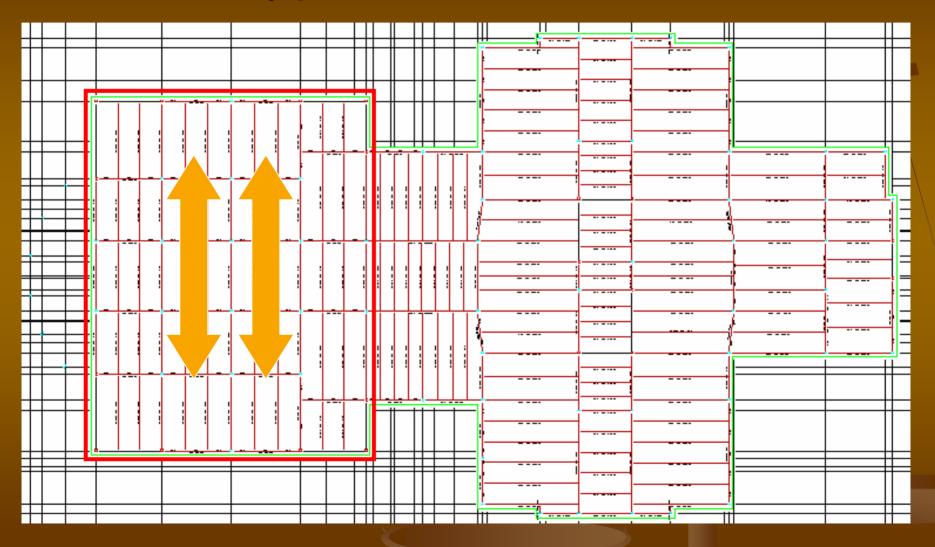
Defining the design blast load Composite column design Mitigation of progressive collapse Blast design for glazing Cost impact of blast design Mechanical changes Architectural changes

Building Background

- Nine stories
- 425,000 sq. ft
- Harrisburg, PA
- \$90-95 million
- Construction from Fall 2006 Fall 2008
 Center of Unified Judicial System
 Courtrooms and offices

Building Background

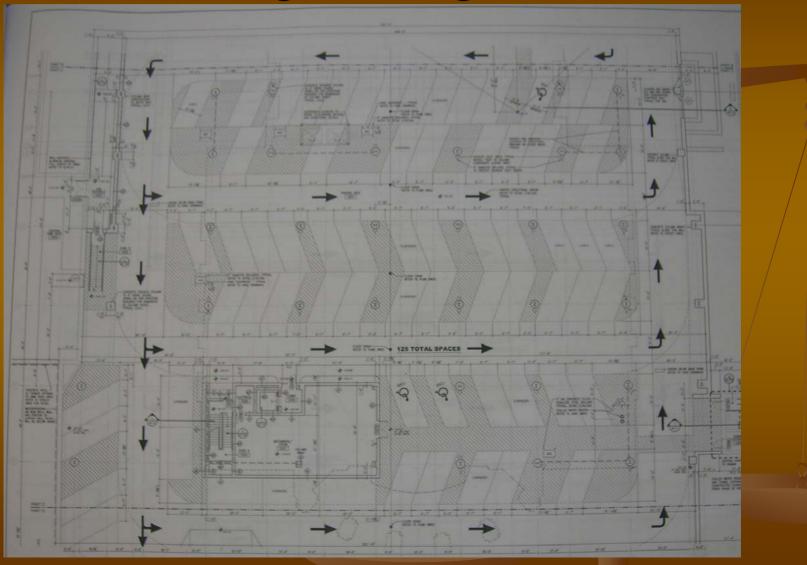
Owner: Pa. State Government
 A/E Firm: Vitetta
 Construction: Heery International


Structural Features

Composite steel frame
W16x36 to W24x68 typical
Spans < 42', Spacing 10' typical
LW Concrete, f'c = 4000 psi
Concentrically braced frames (R=3.25)
Foundation made of piers and caissons

Architectural Features

Indiana limestone to match surrounding buildings
Modern and conservative
Five story atrium
3 rectangular forms
Future expansion


Typical Floor Plan

Selection of Design Blast Location

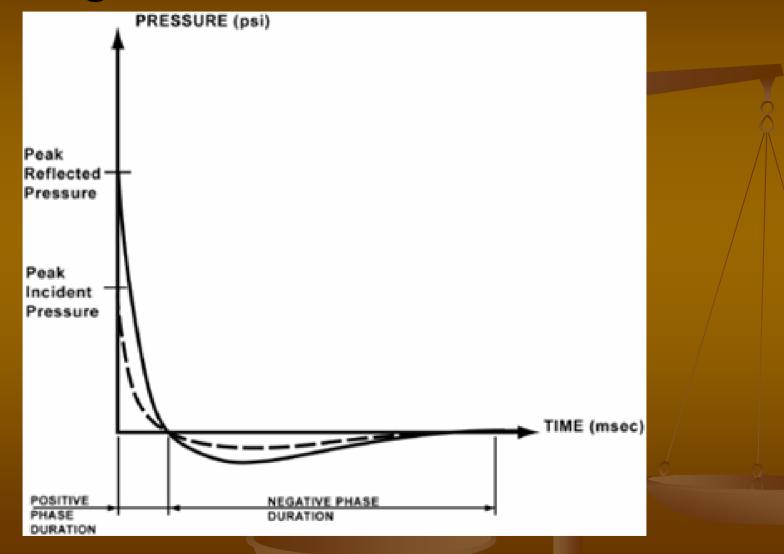
Bordered on three faces
Gathering space and highway in front
High level of security
Lower level parking garage

Parking Garage Plan

Selection of Design Blast Force

Define load as a max loaded car bomb
 1000 lbs
 TNT Equivalency

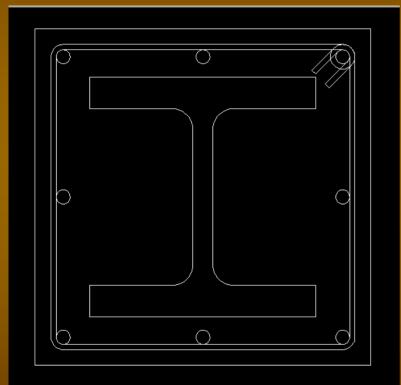
ATF	VEHICLE DESCRIPTION	MAXIMUM EXPLOSIVES CAPACITY	LETHAL AIR BLAST RANGE	MINIMUM EVACUATION DISTANCE	FALLING GLASS HAZARD	
	COMPACT SEDAN	500 Pounds 227 Kilos <i>(In Trunk)</i>	100 Feet 30 Meters	1,500 Feet 457 Meters	1,250 Feet 381 Meters	
	FULL SIZE SEDAN	1,000 Pounds 455 Kilos <i>(In Trunk)</i>	125 Feet 38 Meters	1,750 Feet 534 Meters	1,750 Feet 534 Meters	
	PASSENGER VAN OR CARGO VAN	4,000 Pounds 1,818 Kilos	200 Feet 61 Meters	2,750 Feet 838 Meters	2,750 Feet 838 Meters	
	SMALL BOX VAN (14 FT BOX)	10,000 Pounds 4,545 Kilos	300 Feet 91 Meters	3,750 Feet 1,143 Meters	3,750 Feet 1,143 Meters	
	BOX VAN OR WATER/FUEL TRUCK	30,000 Pounds 13,636 Kilos	450 Feet 137 Meters	6,500 Feet 1,982 Meters	6,500 Feet 1,982 Meters	
	SEMI- TRAILER	60,000 Pounds 27,273 Kilos	600 Feet 183 Meters	7,000 Feet 2,134 Meters	7,000 Feet 2,134 Meters	


Selection of Design Blast Force

25' standoff distance
 Scaled distance 'Z' (TM5-1300):

$$Z = \frac{R}{W^{1/3}} = \frac{25 \, feet}{(1000 \, lbs)^{1/3}} = 2.5 \, feet$$

Pso = 200 psi = 28.8 kips/sq.ft.
 Positive impulse lasts for milliseconds


Charge Pressure-Time Chart

Composite Columns

Existing concrete
Protection of the steel column
Static analysis
Max of 1 column incapacitated
Direct shear capacity

Composite Columns

Shape Min. dim. no steel 39x39 W12x17036x36 W12x210 35x35 W12x230 35x35 W14x257 33x33 W14x311 31x31 W14x500 23x23

AISC Blast Test

4000 lbs @ 12'
Pso = 1500 psi
W14x233
Brick cladding

AISC Blast Test

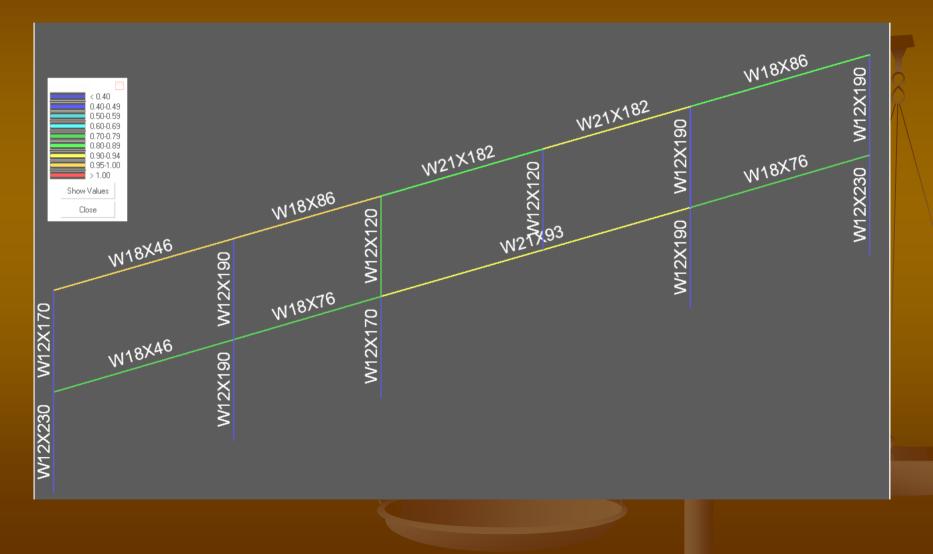
δ_x = 4"
 δ_y = 1.5"
 Still usable for prog collapse mitigation

Damage

Vierendeel Trusses

- Moment frames
- Improve redundancy
- Allow redistribution of/load
- Progressive collapse only
 - Adequate wind/seimic FRS already exists

Vierendeel Trusses


Strength, life safety only concerns
 Serviceability, deflection not considered
 GSA: 0.82D + 0.2L is conservative

 Includes Ω₀ (1.1) and φ (0.9)

 My design: 1.0D + 0.25L

 No reliance on overstrength

Vierendeel Trusses Stress Diagram – 0.82D + 0.2L

Vierendeel Trusses Final Design

2 W21x122	W24x192	W21x201	W24x192	W21x122	
061X21M W24x229	021X170 W21x147	W21x111 W21x111	061 X21M W21x147	W24x229	W12x170
W12x230	W12x170	W12x170	W12X190		W12x230
E G 8 8	L 8	R 8	V 8		× 8

Blast-resistant Glazing

- Glass shards represent serious hazard in blast scenario
- Blasts capable of projecting shards at speeds >70 MPH
- 40% of Ok. City bombing injuries
- 5,000 injured by glass and debris in 1998 U.S. Embassy bombing in Kenya

ASTM E1300

Strength determined by: Glass type Window dimensions Glazing thickness Plate Width (in.) For 3 sec loading (conservative for blast)

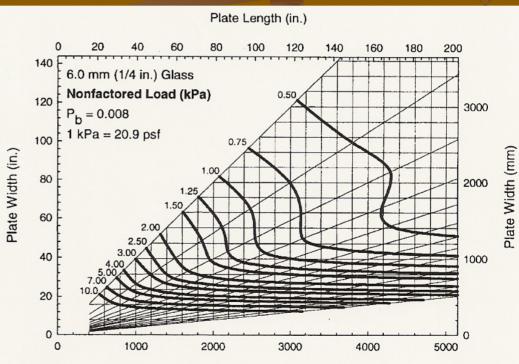
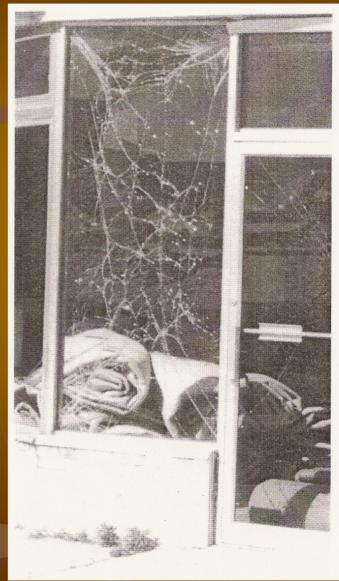


Plate Length (mm)


ASTM E1300

Limited to 10.0 kPa
Most windows fail due to short standoff distance
Therefore, changing dimensions, thickness not the best way to improve blast resistance

Laminated glass

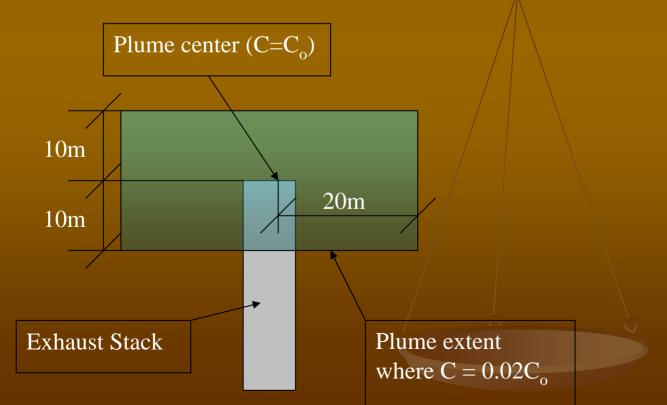
Keeps glazing in pocket
Protects life safety
Does not prevent breakage

Other option: ASF
 Usually retrofit
 More expensive

Cost of new systems

Vierendeel Trusses ■ Larger members +\$62,000 • Moment connx. + \$3,600 Composite Columns Add'l cost is neglegible Blast-resistant glazing Laminated IGU's /+\$27,400 +\$93,000 0.1% increase for \$95 million building cost

Mechanical system

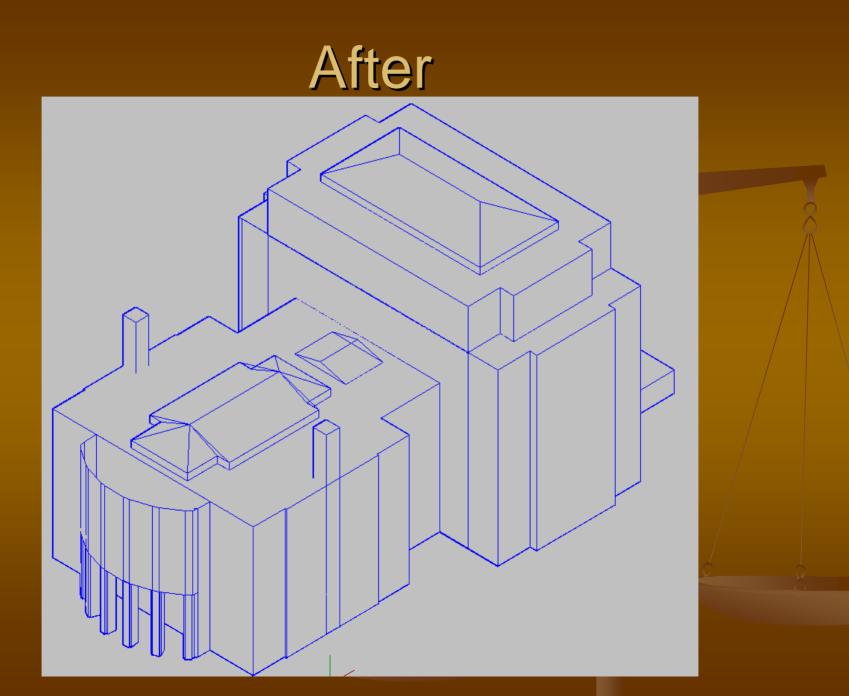

Combat bioterrorism attack
 Automatically flush contaminants from air
 Design for two 3rd floor courtrooms

6 AC/hour (7560 cfm)
 Negative pressure in room
 V_{supply} < V_{exhaust}

Mechanical System

Normal Supply Condition: 2930 cfm Contamination Condition: 5690 cfm Controlled by supply fan modules ■ 4.5 AC/hour Upgrade AHU to McQuay Vision CAH008 Min supply: 2200 cfm Max supply: 6000 cfm Exhaust Fan: PennBarry Fumex FX18V (3) fans per room @ 3023 cfm = 9069 cfm

Mechanical System
12"x16" rectangular ducts
Separate duct run for each exhaust
Final exhaust must be 10m from occupancy


Mechanical System

Cost of new system

 Larger A.H.U. + \$6,000
 Exhaust fans + \$9,600
 Ductwork +\$23,500 +\$39,100

This cost does not include structure, cladding of stacks

Conclusions and Recommendations All blast-resistant designs implemented Benefit vs. Cost New mechanical system not used Limited use Security Better design aids and procedures needed More research needed for blast design

Questions?

